
The Processing Graph Method Tool (PGMT)

Richard S. Stevens
Naval Research Laboratory

Washington, DC 20375-5337
stevens@ait.nrl.navy.mil

Abstract

To acquire state-of-the-art hardware at reduced cost, the U.S. Navy is committed to buying
Commercial Off The Shelf (COTS) computer hardware. In this rapidly changing technological
world, today's hardware will be obsolete tomorrow. The Navy's complex problems often
require more computational power than can be delivered by a single serial processor. The
solution lies in distributed processing. However, distributed processors tend to have
architecture specific languages, requiring an expensive and time-consuming manual rewrite of
application software as new technology and new machines become available.

The Processing Graph Method (PGM), developed at the Naval Research Laboratory (NRL)
in Washington, DC, is an architecture independent method for specifying application software
for distributed architectures. Its model of computation is reconfigurable dynamic data flow:
dynamic, because the amount of data consumed and produced by an actor may vary from one
firing to another; and reconfigurable, because a graph may be disassembled and reassembled.
PGM was implemented on the Navy Standard Signal Processor (AN/UYS-2), and on VAX and
Sun workstations. The PGMT project at NRL is developing a tool set that will facilitate the
implementation of PGM on a given distributed architecture at relatively low cost. We describe
the major features PGM and discuss the PGMT project.

1: Introduction

The relentless demand for increasingly high performance is outpacing the increasing speed
of sequential processors, and so we turn to distributed architectures. To take advantage of the
power of a given distributed architecture, the subject domain expert must be teamed with a
highly skilled programmer who can write application code that is tailored to the architecture.
As new, higher performance architectures become available, previously written code requires
complete revision. This makes software prohibitively expensive to maintain. To lower the life-
cycle cost of software, we must have a high-level, user-friendly, architecture-independent
language that expresses in a natural way the inherent parallelism in a user application. To
implement this language on new distributed architectures at low cost, we need a tool set to
automate much of the development of compilers. To take advantage of the power of a given
architecture, this tool set must have the capability to analyze an application, and then partition
and distribute it within the architecture. How this partitioning and distribution is done can
have an enormous effect on performance.

The Processing Graph Method (PGM) [1] was developed at the Naval Research Laboratory
(NRL) to meet the needs of a language for developing applications for distributed
architectures. A PGM application encompasses a processing graph and a command program.
The computation model of the processing graph is data flow, which has a long history that

began in the 1960s [2]. The command program has the capability, by calling library
procedures, to reconfigure the graph. In this way the processing graph may be adapted to
rapidly changing processing requirements. PGM was implemented on the Navy Standard
Signal Processor (AN/UYS-2) for signal processing applications. PGM was also implemented
on the VAX and SUN workstations for use in prototyping applications for the AN/UYS-2.

The PGM Tool (PGMT), under development at NRL, will demonstrate the technology to
implement PGM on a given heterogeneous network of processors. For further information, see
http://www.ait.nrl.navy.mil/pgmt/pgm2.html. Section 2 gives a brief but friendly description
of PGM [1]. Section 3 discusses the PGMT project, its technical problems, and the current
status of our work. Section 4 is a concluding summary.

2. The Processing Graph Method

Motivated by the structure of Petri Nets [4], PGM defines a processing graph to comprise
transitions and places. A transition (or actor) processes data; a place stores data enroute
between transitions. A transition mayfire when there is sufficient data in its input places. To
fire, a transition reads and consumes data from its input places, and produces the results of
computation to its output places. While firing, a transition has no internal memory of its
previous firings. The state of a graph is determined by the data stored in its places.

A data flow graph isdeterminate if the output data streams are determined solely by the
input data streams and are independent of the order in which the actors are fired [2]. A PGM
graph, called aprocessing graph, will be determinate if certain constructs are not used, as we
will note below. After discussing the fundamental notion of a family, we describe the features
of PGM. An example of an application processing graph is given in [3].

2.1 Family

A family is a list ofmembers of a common type. Each member may be a common base
type, e.g., integer, floating point, or a user-defined type. Recursively, each member in a family
may be another family, provided every member has the same depth of recursion and the same
base type, but not necessarily the same number of members.

2.2 Place

PGM is strongly typed. Each place has an associatedmode that identifies the type of the
tokens that it stores. PGM specifies two kinds of places:queues andgraph variables.

2.2.1 Queue: Aqueue stores data enroute from transition to transition. Each queue stores its
data in a family whose members are calledtokens. A queueQ passes tokens from transitionA
to transitionB in a first-in-first-out manner. IfQ is empty, thenB may not fire untilA
produces sufficiently many tokens toQ. Each queue has acapacity, which determines the
maximum number of tokens. IfQ is at capacity, thenA may not fire untilB consumes one or
more tokens fromQ, thereby puttingQ sufficiently below capacity. A queue's capacity may be
adjusted as needed during run time.

2.2.2 Graph Variable: Agraph variable is a place that stores a single token. Any number of
transitions may access a given graph variable for input and/or output. A transition reading a
graph variable gets the most recent token produced to that graph variable. Consuming from a
graph variable has no effect; the token remains in the graph variable. When a transition

produces a token to a graph variable, the previous token is replaced by the new one. A
processing graph with one or more graph variables may not be determinate.

2.3 Transition

For atransition to fire, each input place must have sufficiently many tokens available, and
each output place must have sufficient capacity to accept the tokens to be produced. PGM
distinguishes betweenordinary transitions andspecial transitions.

2.3.1 Ordinary Transition: In each firing, anordinary transition reads and consumes exactly
one token from each of its input places, and produces exactly one token to each of its output
places. Each ordinary transition has a user-specifiedtransition statement, which defines the
computation to be performed during each firing. The transition statement may call routines, or
primitives, which may be written in native code to enhance performance by taking advantage
of individual processor architecture.

Figure 1 depicts an ordinary transition (the circle), reading a single token from each of three
input places and producing a single token to each of two output places.

2.3.2 Special Transitions: Thespecial transitions do no user-specified processing. Instead,
they reformat data. The special transitions support the restructuring of data when it is
necessary during one execution to read a number of tokens (zero or more) from an input place
or to produce a number of tokens to an output place. The three kinds of special transitions are
pack, unpack, anduncontrolled merge.

A pack transition is used to read zero or more tokens from a single input queue and
assemble them into a single token that is a family of the tokens read in. This is useful, for
example, when an ordinary transition reads a token that is a family of numeric values produced
as individual tokens by an upstream transition.

Each pack transition reads and consumes zero or more tokens from its input place, and
produces a single token to its output place. The number of tokens to be read and the number of
tokens to be consumed are specified by parameters of the pack transition; these parameters

Figure 1: Ordinary Transition

CONSUMEOFFSET
CONSUME

READOFFSET
INPUT READ

Output token:
family of
input tokens

OUTPUT

Figure 2: Pack Transition

may be read from other input places. Each pack transition produces a single output token,
which is afamily whose members are the tokens read in. Figure 2 depicts a pack transition, the
four input parameters, three input tokens, and one output token.

An unpack transition reads a single token that is a family and produces the members as
individual tokens. This is useful, for example, when an ordinary transition produces a token
that is a family of numeric values that are read as individual tokens by a downstream transition.

Each unpack transition reads and consumes a single token that is a family. This input token
is disassembled, and each family member is produced as an output token. The content of the
input token is produced as a single integer token to a second output place. Figure 3 depicts an
unpack transition with one input token (a family with n members), n output tokens, and the
integer n.

Eachuncontrolled merge transition has a family of input places and a single output place. To
fire, it is sufficient for a single token to exist on just one of the input places. Firing consists of
reading and consuming one token from one place and producing an equal token to the output
place. A processing graph with one or more uncontrolled merge transitions may not be
determinate. Figure 4 depicts an uncontrolled merge transition (the circle containing a Venn
diagram) with a family of inputs, one token at one input, and one output token. A processing
graph with one or more uncontrolled merges may not be determinate.

2.4 Modular Graph Specification

A processing graph may have one or moreincluded graphs. Each included graph may, in
turn, have its own included graphs, etc.

PGM applies the notion of family to all PGM objects, including transitions, places, and even
included graphs. Thus a user may construct parallel channels of computation in terms of a
family of included graphs with a common underlying graph specification.

An example of a processing graph is shown in Figure 5. This graph has no included graphs,
however it could be used as an included graph in a larger signal processing application. We
use a circle to represent a transition, an open triangle to represent a queue, and a triangle with

0

0 n-1

n-1

n
INPUT

PRODUCE

OUTPUT

Figure 3: Unpack Transition

Family of
Input Ports

Figure 4: Uncontrolled Merge

line to represent a graph variable. A square represents an included graph, and square with an X
represents input ports or output ports of the graph.

The filter and bandshift transitions are ordinary transitions. During each execution, the filter
transition reads two tokens, one from each of its inputs. These input tokens are families of the
same size; the transition computes their inner product and produces a token containing the
result on its output. One of the input tokens contains the filter coefficients. This token is
stored in a graph variable with no transition writing to it; thus the graph variable maintains a
constant value, and the same filter coefficients are used every time. The other input token to
the filter transition is output from the pack transition, which takes its input from the graph's
input port at the left. A stream of numbers to be processed by the graph is input at this port.

In the pack transition, we control the size and contents of each output token by setting the
READ and CONSUME parameters, with the READOFFSET and CONSUMEOFFSET set to
zero. Specifically, the size of its output family token is equal to the READ parameter, which
we set to match the number of filter coefficients. We set the CONSUME parameter by an
amount less than the READ in order to reuse the values in the input stream.

In each execution of the bandshift transition, the output token is the product of the input
token and a factor that changes from one execution to the next. This factor is a function of the
previous factor and the center frequency. Because the transition has no memory of previous
executions, we provide a feed-back queue to store the previous factor. For the first execution
of the bandshift transition, we give this feed-back queue an initial token with value 1. The
center frequency, which may be changed, is stored in a graph variable. To allow a new value
to be written from an external source, we connect a graph input port to this graph variable.

2.5 Configuration and Reconfiguration: Command Programs

An integral part of PGM is the capability to reconfigure the processing graph.
Reconfiguration is specified by acommand program to restructure the processing graph to
meet new processing requirements in a rapidly changing environment.

The user writes the command program in a high-level language like C, C++, Ada, or Java.
PGM specifies a library of procedures that the command program may call to do such things as

• create a processing graph and enable its transitions to fire,
• enter data into a processing graph,
• read data output from a processing graph,
• suspend the execution of a processing graph, i.e., disallow transition firing,
• save a processing graph and subsequently reload it,
• modify the values of parameters used by transitions in the processing graph, and
• modify the structure of a processing graph by disconnecting places and transitions and

reconnecting them in different ways.

filter
band-
shift

Figure 5: Graph

family of filter
coefficients

center frequency feed-back
queue

Some of these procedures give the command program the power to alter the values of key
parameters that are used in computation. In the above example, the command program may
write the new center frequency into that graph variable via the graph input port. Other
procedures give greater power to the command program. By disconnecting places, transitions,
and included graph ports, and reconnecting them in different ways, the command program may
change the processing that is performed in response to dynamically changing requirements.
An example is shown in Figure 6.

Data enters this graph via the graph input port at the left and is initially processed by the
included graph A. The output from graph A is then further processed by included graph B, the
results of which are delivered for external use, e.g., display or storage. If the dynamic situation
changes, it may be necessary to process the output of A using included graph C instead of B.
In this case, the command program reconfigures the graph by suspending execution of the
graph, disconnecting the ports of B (shown by solid arrows), reconnecting the ports of C
(shown by dashed arrows), and finally restarting the graph.

3. The Processing Graph Method Tool (PGMT)

NRL is currently developing PGMT to demonstrate a way of implementing PGM
applications on a given distributed architecture. A complete implementation of PGM on a
target architecture must include a library of the primitives that may be called in transition
statements and a library of the command program procedures.

PGMT will provide a tool set that supports the following:
• User specification by Graphic User Interface (GUI) of a target distributed architecture,
• Analysis of the target architecture,
• User specification by GUI of a processing graph,
• Analysis of the processing graph, and
• Partitioning of the processing graph into segments and assignment of the segments to the

processors in the target architecture.
The specification and analysis of a given distributed architecture must be performed just

once. To analyze the target architecture, the following inputs will be used:
• the number of each kind of processor in the architecture,
• the primitives that can be executed on each kind of processor,
• processing times for each primitive on each kind of processor,
• the communication connections between the processors, and
• communication times between processors.
In most distributed architectures, the time to transmit data between processes is significant

when compared to the execution time of transitions. Assigning transitions to processors
without concern for communication may achieve high concurrency but will likely lead to poor
performance because of high communication costs. On the other hand, assigning all transitions
to the same processor may lower communication costs but will ignore opportunities for

A

B

C

Figure 6: Graph Reconfiguration

concurrent processing, thus failing to take advantage of the distributed architecture. Achieving
high throughput will require a balance between these two extremes.

To take advantage of the processing power of the distributed architecture, each processing
graph will be analyzed at compile-time. This analysis will identify connected segments in the
processing graph which contain transitions that can be statically assigned and scheduled using
established techniques [5, 6, 7, 8]. Directed cycles in the processing graph will also be
identified. The results will be used to assign the transitions of the processing graph to the
processors in the target architecture. The goal in this assignment is to provide maximum
throughput within specified latency constraints. This assignment is an NP-hard problem, and
so we will use heuristic methods to reach suboptimal solutions.

In analyzing and partitioning the graph at compile time, we will design PGMT to identify
connected segments of transitions and connecting places for assignment to processes. This
will reduce costs of both interprocess communication and run-time assignment of transitions to
processors.

In most application processing graphs, we anticipate that the special transitions will be used
sparingly. The reason is that most ordinary transitions will read tokens that are families
containing large amounts of data, which are compatible with the output of the ordinary
transitions immediately upstream. Predominant use of ordinary transitions will simplify the
graph analysis. Moreover, depending on the target architecture, this may well provide an
additional performance enhancement by simplifying the communication between processors.

3.1 Technical Problems

When done effectively, static analysis and assignment results in significant performance
improvements by reducing the run-time overhead of assigning the processes to processors and
by reducing communication costs between processors. The literature reflects much active
research to find methods for such analysis and assignment, and we will take advantage of
proven methods.

The compile time analysis and assignment depends on assumptions about the structure of
the processing graph and the target architecture. In particular, the structure of the processing
graph and the target architecture are assumed to be fixed over time.

In PGM, the varying of produce and consume amounts is limited to the special transitions.
If a segment contains only ordinary transitions, which always consume and produce exactly
one token at each adjacent place, then the segment returns to its previous state after each
transition fires once. While partitioning of the segments and assignment to processors is not
trivial, [5] provides a partial analysis of partitioning and assignment.

Analyzing the more coarse-grained structure of the segments and connections between them
is more difficult, because with the special transitions, the amount of data produced and
consumed varies over time. Therefore, the scheduling and assignment of these segments must
be done during run time.

It is undecideable whether a dataflow graph with variable produce and consume amounts
can be run forever in bounded memory. Nonetheless, Tom Parks gives a method for executing
a graph in bounded memory, whenever that is possible [8].

When the command program reconfigures a processing graph, the analysis, assignment, and
distribution must be repeated. If the new configuration can be anticipated at compile time,
then this analysis can be accomplished beforehand. If not, then the analysis, assignment, and
distribution imposes a run time cost. Compile time analysis of configurations will be limited
in cases where an unmanageably large number of configurations results from many
independent configuration options.

If the distributed architecture is dynamically reconfigurable (i.e., if processors may be added
to or removed from the system), the assignment and distribution must be repeated. Again, a
run time cost must be paid.

3.2 Status of PGMT Development Progress to Date

At NRL, we have demonstrated a GUI capture of a processing graph and execution on a Sun
workstation in a multi-threaded environment. Our next step will be to target the processing to
a network of Sun workstations. Following that, we plan to target a heterogeneous network of
processors. Finally, we plan to target a dynamic network of processors, in which individual
processors may be taken off line and others added.

4. Summary

We have described PGM as a method of specifying applications. PGM is architecture
independent and iconic. It has a reconfigurable data flow model of computation. At NRL, we
are building a tool set PGMT, which will demonstrate technology to implement PGM on a
given distributed architecture. The cost of such implementation using PGMT will be much
less than working from scratch.

We will place all of our software in the public domain, with the expectation that the
commercial marketplace will build on our work. If we are successful, the power of distributed
processing will be opened to a much broader audience. The entire computer industry will
benefit, and the U.S. Navy will have achieved its goal of reducing the life-cycle cost of high
performance software.

ACKNOWLEDGEMENTS

This work was partially supported by the Office of Naval Research Computer Science
Program.

The author wishes to thank David J. Kaplan for many helpful discussions.

REFERENCES

1. D.J. Kaplan and R.S. Stevens,Processing Graph Method 2.0 Semantics, U.S. Naval Research Laboratory, 1995,
http://www.ait.nrl.navy.mil/pgmt/PGMspectoc.html

2. Richard M. Karp & Raymond E. Miller,Properties of a Model for Parallel Computations: Determinacy,
Termination, Queuing, SIAM J. Appl. Math. v14, pp 1390-1410, 1966.

3. D.J. Kaplan,An Introduction to the Processing Graph Method, 1997 (Presented at the International Conference

on Engineering of Computer Based Systems, IEEE, Monterey California, March 24-28, 1997).

4. J. L. Peterson,Petri Net Theory and the Modeling of Systems, Englewood Cliffs, N.J., Prentice-Hall, c1981.

5. G. C. Sih,Multiprocessor Scheduling to Account for Interprocessor Communication, Ph.D. thesis, Memorandum
No. UCB/ERL M91/29, Electronics Research Laboratory, University of California at Berkeley, April, 1991.

6. J. T. Buck,Scheduling Dynamic Dataflow Graphs with Bounded Memory Using the Token Flow Model, Ph.D.
thesis, Memorandum No. UCB/ERL M93/69, Electronics Research Laboratory, University of California at
Berkeley, September, 1993.

7. S. S. Bhattacharyya, P. K. Murthy, and E. A. Lee,Software Synthesis from Dataflow Graphs, Kluwer Academic
Publishers, Norwell, Ma, 1996.

8. T. M. Parks,Bounded Scheduling of Process Networks, Technical Report UCB/ERL-95-105. PhD Dissertation.
EECS Department, University of California, Berkeley CA 94720, December 1995, http://ptolemy.eecs.berkeley.edu/
papers/parksThesis.

